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1. INTRODUCTION

The primary reference surface for heights is the geoid. The geoid
is defined as the equipotential surface of earth's actual gravity field
which most closely approximates mean sea level in the spatial least
squares sense. Historically the geoid has played an important conceptual
role in vertical datum work. A practical realization of the geoid
was brought about by tide gauge measurements at selected points. The
effects of tides, and of other periodic variations, can be filtered
out using appropriate numerical filters. The result is supposed to
yield the mean sea level at a given site. Now, to establish a vertical
network origin it was only necessary to define this point to have an
elevation zero. From this point levelling can proceed to determine
potential differences, or orthometric heights, of all other points
in the vertical datum. The heights then refer to a specific vertical
datum by the mean sea level at the origin.

The usual assumption made in the past was that the mean sea level

was a unique equipotential surface. It is now well recognized that

this is not the case and that the vertical datums of the world are
not ina uniform system due to the effects of sea surface topography.
The sea surface topography is the departure of the mean sea level from
the geoid. The causes of sea surface topography include ocean currents,
water density variations as well as air pressure and wind stress.
In addition, close to the shore the sea-bed topography and river discharge
may also play a significant role.

It thus follows that heights given on one vertical datum are not
compatible with heights on another datum. Fortunately, this incompatibility
is not large since the effects of sea surface topography ate of the
order of 2 meters. Nevertheless, there are applications wherea consistent
height system to a decimeter level is desired. For example, in the
calculation of free air gravity anomalies to match today's accuracy
of gravity measurments (0.02 mgal) we should know the height of the
point to 6 cm which is a much stronger requirement than can currently
be reached due to the variety of local vertical datums.

The variable sea surface topography can cause problems even within
a single vertical datum. It has been the practice in some countries
to connect precise levelling nets to several tide gauges, widely dispersed
around the perimeter of the net. The sea surface topography at each
tide gauge is different, and resulting adjustment of the levelling
data to fit these different mean sea levels can lead, and led, to dis-
tortions in the levelling networks.

In many computations a precise knowledge of a set of spherical
harmonic coefficients of the earth's disturbing potential T is required.
The coefficients can be derived from a combination of satellite derived

potential coefficients, lx 10 terrestrial gravity anomalies, and lx 10
anomalies derived from Seasat altimeter data. In the case of the terrestrial
data, systematic errors may be caused by inconsistencies between

, - -1-
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different vertical datums, so that gravity anomalies after reduction
do not refer to a single equipotential surface.

The purpose of the present work is to evaluate the magnitude of
. the errors in the potential coefficients caused by the inconsistencies

in the world's vertical datum. Due to the insufficient information
on the levelling networks in most of the areas of the earth's land
surface, the technique of numerical simulation was applied. It should
be mentioned however, that the model height-error function (used as
the basis for this study) was constructed in such a way as to get the
best approximation of the reality from the information available.
The contribution of the computed error in the potential coefficients
to the geoid undulations and gravity anomalies is also given here.

The technique of numerical simulation was also applied to the
problem of modelling distortions in the levelling net which were introduced
during the least squares adjustment, when more than one coastal height
was constrianed to zero. The example of the levelling net of the United
States was chosen here because such procedure actually took place during
the 1929 General Adjustment, and all heights being used today are possibly
affected by the error of this kind. The distortions were modelled
using the adjustment of the simulated network of the United States
and were included in the basic height-error function.

Summarizing, the results obtained in these studies refer to two
different sources of errors. The first is the error caused by the world's
inconsistent height datums, the second is the error introduced by improper
data reduction (forcing the height of more than one coastal point to
zero). Both sources of errors are present in the actual vertical datum
work, and both propagate on to any derived gravimetric quantity related
to gravity anomalies, such as the disturbing potential, geoid undulations,
deflections of vertical and others.

2. SEA SURFACE TOPOGRAPHY PROBLEM

Classically the undisturbed ocean surface has been taken as the
geoid, that is the unique equipotential surface of the actual gravity
field. Unfortunately such a surface does not exist and the actual
ocean surface can serve only as an approximation of the geoid. The
departure of the mean sea level (MSL) from the equipotential surface
is called sea surface topography (SST). The MSL is constantly changing
with time, as is the SST (Merry and Vanicek, 1982). The MSL variations
are mainly due to salinity differences, temperature differences, atmospheric
pressure changes, winds, crustal movements, eustatic changes, and river
discharge. Also, the global mean sea surface appears to be rising
at a rate of approximately 0.5 cm/year (Frasetto, 1970). Nevertheless,
we make an assumption here that all time dependent components have
been filtered out and that SST implied bysuch idealizedMSLis independent
of time.

-2-
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It is general practice to choose the average physical water surface
as the reference level not only for measurements of altitude on land,
but also for all depth determinations at sea. Oceanography studies
of the MSL require the determinationof the relative topography of the
physical water surface (Lisitzin, 1974). Different authors have chosen
a definite constant depth as reference. . important names worth
mentioning here are: Dietrich (1937), Defant (1941), Lacombe (1951),
Reid (1961), Stommel (1965), Lisitzin (1965), Sturges (1974), and
Levitus (1982). Other oceanographers have chosen a rather different
approach to the problem, endeavoring to determine for every part of
the ocean the layer of 'no motion' or, more precisely, the layer of
minimum water motion. The first important contribution to this problem
was done by Dietrich in 1937.

Lisitzin (1965) computed the MSL in dynamic cm, relative to the
4000-decibar dynamic depth. According to the standard textbooks, the
dynamic depth D of an isobaric surface is computed in two parts:
fixed, 'standard ocean' part D (35, 0, p) of uniform 35% salinity and
00 C temperature (for a given pressure level p), and the 'anomaly of
dynamic depth' AD. Therefore, the oceanic graphics (like those given
by Lisitzin, 1965) represent the height surplus of the actual mean
sea level (or zero-decibar surface) over the theoretical zero-decibar
surface of the standard ocean. This height surplus is usually expressed
in dynamic cm, where (according to the standard definition) 1 dyn.cm
is the unit of potential corresponding to the work required to move
a unit mass approximately 1 cm in vertical direction. The surface
of equal dynamic depth is thus the equipotential surface, although
without any geodetic significance. Figure 1 shows Lisitzin's world
oceanic chart of the Sea Surface Topography. The sea surface variation
(in dyn. cm) was computed relative to the 4000-dbar dynamic depth at
open deep regions of oceans. The chart reveals that for all latitudes
the mean sea level is lowest in the Atlantic Ocean, while the highest
values, generally, are to be found in the Pacific Ocean. As an average,
the Pacific Ocean stands 72 dyn.cm higher than the Atlantic Ocean and
36 dyn.cm higher than the Indian Ocean. This is strongly connected
to the variation of water density between the different oceans. The
highest mean sea level occurs in the western parts of all oceans, at
the latitudes of approximately 20°to 300in both hemispheres. From this
highest position the MSL slopes steeply towards the poles. The lowest
values occur in the higher latitudes of the two hemispheres and there
is a secondary minimum in the zones around the equator.

The average sea level for all the deep-sea regions of the oceans
considered in Figure 1 is 289 dyn.cm (Lisitzin, 1965). The MSL in
the adjacent and Eaditerranean seas is generally lower than that in
the oceans (Lisitzin, 1965). Therefore, as a first approximation of
global average Lisitzin proposed the value of 280 dyn.cm. This value
will be used in the sequel.

If we had reliable values of SST we could correct MSL heights
to get the geoid. Unf. rtunately, the complexity of SST problem does

-3-
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not allow for realistic approximation of the geoid at the sub-decimeter
level, and the unification of all vertical datums is not possible today.
Instead based on the existing incomplete information on SST, we can
try to model the spatial interrelations between different levelling
nets. Extrapolating SST from deep-ocean regions to continental shore-l ines
and utilizing available information on the levelling techniques and
adjustment procedure!; it.. different vertical networks we can construct
the spatial height-error function. This function would reflect the
relative location of different vertical datums with respect to the
idealized geoid. For the purpose of this study the reference geoid
is that implied by the Lisitzin's global average value of SST, that
is 280 dyn.cm. The magnitude of our height-error function would not
exceed the amplitude of the SST, that is 2 m. In the next chapter
we examine how the error of this magnitude propagates on to the spherical
harmonic coefficients of the disturbing potential derived from the
terrestrial gravity anomaly data.

3. SST AND DIFFERENT VERTICAL NETWORK PROCEDURES

In this chapter vertical network procedures in different parts
of the world are examined. The information given here is by no means
complete. Of main interest to us is the incorrect assumption that
MSL coincides with the geoid, and its implication on the magnitude
of the relative spatial inconsistencies between different levelling
datums. Such an estimation was possible after extrapolating the values
of SST from the deep-ocean regions to the continental shore-lines.
This sort of procedure is by no means accurate but is expected to provide
a sufficient approximation for the purpose of our model studies. The
Sea Surface ToDography on continental shelves is affected by the sea-bed
topography, river discharge, wind stress and other factors (Lisitzin,
1965) and, therefore, might significantly differ from the values estimated
on the basis of extrapolation from the deep ocean regions. Nevertheless,
we use this technique since we believe it assures sufficient accuracy
for the purpose of this investigation.

* The main source of information on SST is the Lisitzin's world-chart
of mean sea level variations relative to the 4000-dbar isobaric surface

* shown on Figure 1. To relate the extrapolated SST values with the
vertical datum's zero-level and levelling network procedures, it is
essential to know the spatial distribution of tide-gauge stations which
were set to zero-height during the adjustment of particular levelling
network. Unfortunately, such information was not available on all
continents so that at some of them we had to assume that a unified
continental vertical network was adjusted with a hypothetical single
master tide-gauge station constrained to zero-height at an arbitrary
fixed location. From this point of view our studies are purely modelling
ones with the intention, however, to produce a realistic range of the
resultant contribution to the set of spherical harmonics, and other
gravimetric quantities derived from gravity data referred to these
datums. On the other hand, wherever possible we reconstruct the spatial
interrelations between different vertical datums as realistically as
the available data allow.

-5-



3.1 Classical Vertical Datum Procedures in the United States and Canada

The present vertical reference system of the United States is
based on the 1929 General Adjustment (Lippold, 1980). This adjustment
contained a total of 107000 km of levelling in the U.S. and Canada
(Figure 2). The 1929 datum was obtained by holIding the fixed zero-elIevations

~* at 26 tide gauge sites; 21 of these spread along East, West and Gulf
Coast of the U.S., and 5 lie in Canada. The distribution of primary
tide gauge stations used as the reference in 1929 adjustment is shown
on Figure 2. The resulting height system was designated the Sea Level
Datum of 1929. This name was later changed to the National Geodetic
Vertical Datum of 1929 (NGVD 29).

Canada did not adopt this datum, because values from a 1928 adjust-
ment had been published the previous year. Therefore, the present
Canadian vertical system is based on the first continental adjustment
carried out in 1928 and realized through the fixed zero-height values
at 3 Atlantic and 2 Pacific tidal stations (Lachapelle, 1918). Those
five primary stations plus Rouses Point (located south of Montreal
on the U.S.-Canadian border and connected to the Atlantic Ocean) form
the set of 6 zero-height constraints applied during the 1928 adjustment.
Figure 3 shows the Canadian vertical framework of 1928 (Lachapelle,
1978).

In the early 50's a new adjustment of the entire Canadian levelling
network was made by the Geodetic Survey. Differences with the 1928

adjustment attained about 15 cm., but no changes were introduced to

on different vertical reference systems. The maximum differences reach
10 cm for points along the border.

Generally, the latest adjustment of the North American Network
in 1929 was based on the four incorrect assumptions (Vanicek, Castle,
Balazs, 1980):

*1. MSL at the 26 utilized tide stations coincides with the geoid
(the height set equal to zero);

2. Observed elevation differences between benchmark pairs are affected
by only random error characterized by a synmmetrical distribution
of probability;

3. There was crustal stability during the development of the network;
4. Orthometric correction computed for normal gravity instead of

the actual gravity were used.
In this study we focus only on the first assumption: the MSL at primary
tide stations is affected by the irregular SST. Forcing the heights
at all 26 stations to be zero causes the distortions in the resultant
vertical datum. Later we will evaluate the possible magnitude of this

ditrto.Of corethe ditrinwill cotiueto anerror i
spherical harmonic coefficients and therefore, will be incoporated
into our global model of height-error function introduced in Chapter 2.

The distribution of SST values around the North American Continent
together with the location of 26 primary tide gauges used as a reference

-6-
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in 1929 adjustment is shown in Figure 4. The SST was extrapolated
from the deep-ocean regions as presented by Lisitzin (1965). It is

-- based on 4000 dbar isobaric deep-sea level. The units are dynamic
centimeters. The global average of 280 dyn.cm was subtracted from
Lisitzin's values in order to produce results with respect to our model
geoid implied by this value.

3.2 Vertical Datum Procedures in Austrmlia

On the Australian continent the Division of National Mapping has
conducted a programme of tidal readings at 30 tide gauges around the
continent between 1966 and 1968 (Leppert, 1970). In 1971 the simultaneous
adjustment was done holding MSL for 1966-1968 fixed at zero at the
above mentioned 30 stations. Figure 5 shows the levelling network
used in 1971 adjustment together with 30 primary tide gauges which
were constrained to zero-height. The net is split into 5 regional
nets which were adjusted separately.

As we see, in the case of Australian continent the coincidence
of MSL with the geoid was assumed. This incorrect assumption will
lead to distortions in the adjusted vertical datum. The distortions
will again propagate on to the spherical harmonics coefficients. Another
incorrect assumption was made, when (in the orthometric correction
formula) the theoretical gravity was used instead of the actual gravity.

On the other hand, the adjustment programs used in the 1971 procedure
allowed the difference in height (at each tide gauge) between the bench
mark and sea level to be allocated any weight between zero and infinity.
By setting weights to zero Mitchell (1972) calculated the free network
with a single constraint at the fundamental tide station, Jervis Bay
(Mitchell, 1972), (Angus-Leppan, Rizos, 1980). As will be pointed
out later, the only acceptable way to adjust a levelling net is to
use a single MSL-value constrained to zero-height. Such treatment
leads to the so called free network, which could be further block-shifted
up or down to obtain the best weighted least squares fit to the MSL
at tide guages. For the purpose of this study, we assume that one
of the free-network solutions will be chosen in the future to represent
the vertical datum of Australia. The extrapolated value of SST at
the fundamental tide station in Jervis Bay is 0.3 ±0.2 m (Angus-Leppan,
Rizos, 1980).

Figure 6 shows the distribution of SST values around the Australian
continent together with the location of 30 primary tide-station held
fixed to zero-height during the 1971 adustment. The SST values are
estimated from Lisitzin's map (Lisitzin, 1965). They are based on
the 4000 dbar isobaric level and the global average of 280 dyn.cm was
taken out in order to get the dynamic heights with respect to our model

-4 geoid implied by this value.

3.3 Vertical Datum Procedure in Europe

The first adjustment of a combined European Levelling Network
was presented by Helmert in 1881. In this computation the mean sea
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levels and the national levelling networks of Central Europe were for
the first time related to one common levelling datum (Heer and Niemeier,
1982). In 1955, the International Commission for the Adjustment of
the United European Levelling Network (UELN) was established in Florence.
The final results of this so-called UELN-55 adjustment, including
Fennoscandia, Central- and South-Western Europe, were published in
1960.

In 1981 a combined adjustment of levelling data from the continental
countries and the United Kingdom was carried out. As the new IAG sub-
commission for UELN was established in 1973, this new network is called
UELN-73. The configuration of the national blocks and tidal stations
are shown on Figure 7 (Kok, F., Ehrnsperger, W., Rietveld, H., 1980).
To avoid difficulties with the various definitions of heights, in the
adjustment of UELN-73 only geopotential numbers or geopotential units
(gpu) were introduced as parameters representing the 'heights' of all
surface points, and geopotential differences were introduced as obser-
vations. In phase I of this new computation the free adjustment of
the levelling networks was performed, without incorporating any infor-
mation on MSL. At first, the data of the 14 West European countries
participating in the net were adjusted separately. After these prelim-
inary computations a combined adjustment was carried out, from which
the geopotential numbers of the included reference points and their
standard deviations were taken. A single datum point in this adjustment
is the Normal Amsterdam Piel (NAP) represented in UELN-73, by point
No. 4019 (Kok, Ehrnsperger, Rietveld, 1980). Gravity data was based
on the International Gravity Standardization Net 1971 (IGSN 71). The
method of observation equations was used. The 79 tidal stations are
connected to the net, but the information on MSL was not used as con-
straints, allowing for the free adjustment dependent only on the geo-
potential number of the datum point at NAP.

In phase II of UELN-73 it is planned to perform statistical testing
of adjusted heights of tidal stations against the oceanographic definition
of MSL. In the future, based on such tests the whole block of adjusted
values obtained in the free adjustment of phase I could be shifted

. in vertical direction in order to obtain an optimal least squares
fit to the oceanographic MSL-values at tide stations. After removing
the average value of SST from coastal heights such optimal fit would
ultimately produce the geoid, at the resolution of the magnitude of
uncertainty to which the values of SST are known.

Figure 8 shows the distribution of SST values around Europe together
with the location of tide gauges connected (passively) to the net (Kok, J.
Ehrnsperger, W. Rietveld, H., 1980). The SST heights are estimated
from Lisitzin's map and the global average of 280 dyn.cm was taken
out in order to produce the dynamic heights with respect to our model
geoid implied by this value.

Since no constraints have been imposed on heights at coastal point,
the UELN-73 datum is free of internal distortions caused by the departure
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of MSL from the geoid. However, the systematic error exists in all

values and is equal to the SST value at the datum point (NAP). This
value could be estimated from Figure 8 as about -50 cm (Lisitzin, 1974,
p. 1963).

3.4 The SST Estimates Along Other Countries

The Lisitzin's world's oceanic chart (Figure 1) can serve as a
basis for extrapolation of the SST values along the coasts of other
continental blocks. The values of SST are based on the 4000 dbar iso-
baric level and the global average of 280 dyn.cm was taken out.

Figure 9 shows the distribution of SST around Asia, Figure 10
around the coasts of South America, and Figure 11 around Africa. The
units for Sea Surface Topography variation are dynamic centimeters.

4. THE DISTORTIONS IN A VERTICAL DATUM DUE TO THE ZERO-CONSTRAINTS
AT SEVERAL TIDE GAUGES

As we know today, the classical assumption that the Mean Sea Level

coincides with the geoid is not valid. However, even today it remains
a common practice to assign the zero-heights to coastal points connected
to the levelling net. These so-called zero-constraints introduce inherent
distortions in the adjusted vertical datum. The magnitude of this
distortion depends mainly on the configuration of tide gauges which

- were constrained to zero-height with respect to the particular dis-
tribution of SST along the perimeter of the net. The distortions intro-
duced at tidal stations can, therefore, reach the amplitude of variation
of SST along the ocean boundaries of the given network. During the
adjustment process those distortions propagate inside the net and all
the interior nodes will be affected by this displacement. In this
chapter we want to evaluate the magnitude of this displacement on the
example of the levelling net of the United States.

All heights on the North American continent are based on the
National Geodetic Vertical Datum of 1929. Therefore, the North Ameri-
can vertical datum is basically warped due to the 26 zero-constraints
at tide gauges incorporated to the net during adjustment. The magnitude

and spatial behaviour of this distortion is of great importance to
our present problem. We will model this distortion and next evaluate
its effect on potential coefficient together with the effects resulting
from the SST problem.

•Z.- 4.1 The General Approach to the Problem

In order to evaluate the distortions in the levelling net the
method of numerical simulation was used.

First, we design a simplified regular grid to model the 1929-
levelling net of the U.S. Our numerical approximations to the actual
network will be constructed as a regular grid inside the rectangle

-16-
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1920 km NS and 4000 km EW, which more or less approximates the actual
boundaries of the U.S Figure 12 shows the example of such network
for the case of 36(=6x6) grid points. The net basically consists of
25 rectangular loops, each 384 km in North-South direction and 800 km
in East-West. Each grid-point represents the unknown height, therefore,

V. . there are 36 unknowns in this example. In the actual vertical datum
work the observations are taken as height differences between points
in the net. In the example we assume there is one observation (height
difference) between each pair of adjacent points giving 60 observation
equations. It means no observation stretches over more than one segment!-, in the net.

As in the case of actual adjustment of the 1929 levelling net,
. each segment between 'bench marks' in the example provides one linear

observation equation of the type

4. h. - hi = ah ij (1)

or

Ah = Ah (2)

In order to simulate the set of observations Ahi we first assign
heights (from a topographic map) to all grid points h0 , h0 , ..., hA.
The grid points are ordered as shown on Figure 12, which aisures a
regular structure of the linear system of observation equations. At
this stage we assign the sea surface topography heights to 'coastal'

points marked on Figure 12. The values of SST with respect to
280 dyn.cm global average can be estimated from Lisitzin's chart
(Figure 4). Now, starting from those reference heights, we can compute
the set of observations Ahij using (1). At this point we have the
right-hand side and the design matrix A of formula (2). The standard
deviations of our synthetic observations were assigned according to
the usual formula (Milbert, 1980):

13 0 13

where Lij - section length (in km) between bench marks i and j
and 0o 0.3 cm. In our simple example it gives the values:

8.49 cm in East-West direction.'-' ij =

5.88 cm in North-South direction

-20-
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Now, we solve the system of observation equations (2) using the
method of linear least squares with linear equality constraints by
downweighting. A brief description of the method together with some
accuracy considerations will be given in the next section. We can
obtain the solution with different sets of constraints. Since in the
1929 adjustment of the levelling net of the U.S. each geodetically
connected tide gauge provided a zero-height constraint, in our model-
studies we also attached a set of linear constraints of the type:

h~ 0, i =1, .. ,k

to the grid points representing 'tide gauges' along the West Coast,
the East Coast, and the Gulf Coast. In our 6 by 6 example we have
13 constraints equations, forcing the least squares solution to assume
zero-height values at 13,grid points marked on Figure 12. Let this
solution be denoted by h

Now we can subtract our reference "true" heights h0 from the
constrained least squares solution h:

d =h -h
0  (3)

The function d represents the vertical datum distortion caused by
the zero-constraints imposed on heights at tidal stations. This function
should be understood in the spatial sense - the distortion varies from
point to point forming a more or less irregular but continuous surface.
The shape and the amplitude of this function is of particular importance.
We can assume that heights in the United States, and most likely in
the entire N. American Continent that are used today, are contaminated
by distortion of this type. The North American vertical datum is warped

XJ and this deformation can be quantitatively modeled by our function d.
The contribution of this distortion to the error in spherical harmonic
coefficients can be now evaluated on performing the Fourier analysisL of the distortion function d as will be described later.

4.2 The Software Considerations

A method of linear least squares with linear equality constraints
by downweighting was used to solve for the distortion function d
in our model studies. This method which is based on orthogonal decomposition
is numerically more stable than the usual methods based on normal equations
approach. For this reason it was used to handle our problem. The House-
holder orthogonal decomposition plays a major role in this technique,

behind this approach.

4.2.1 Householder Orthogonal Decomposition for Least Squares Problems
and Disadvantages of Normal Equations Method

We begin with some basic definitions:
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An orthgonal decomposition of mxn matrix A of rank k means
to find an mxm orthogonal matrix H, an mxn matrix of the form

R11  0
Rz[ A•':U'

0 0

and an nxn orthogonal matrix K, so that A=HRKT and R11  is a
kxk matrix of rank k.

An important property of the orthogonal matrix: if Q is ortho-
gonal, then we have:

- preservation of Euclidean length (norm) under multiplication

i QY Il M 1Y
- stability in computation with regard to propagating data errors or

*- uncertainty.

Householder transformation (Householder, 1958).

Given a m-vector v00, there exists an orthogonal matrix Q such that

Qv 1 - INvi e 1 with

V1

0 V
+1 if v> 0

el=  and where v =

-I if v1 <0o .

It turns out that Q = -2uu' where uu= vJ+ a lvl eand
Im - identity matrix. uTu

Geometric interpretation of Householder transformation:

it represents a reflection in the (m-1) - dimensional subspace, S
orthogonal to the vector u . By this it is meant that Qu = u and
Qs = s for all s c S.

At this stage, we can formulate the least squares problem (Lawson

and Hanson, 1974).

For an equation

- Ax b (4)
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with a real mxn matrix A of rank k < min (m,m) and a real m-vector
b , find a real n-vector x minimizing the euclidean length of Ax-b.
Additionally, we explicitly assume that the numerical data that constitute
A and b have only a limited number of accurate digits. This assumption
reflects the usual situation in numerical handling of data. In our
modelling studies the set of observation equations (2) will be considered
a least squares problem.

Next we briefly describe the numerical properties of the algorithm
to solve problem least squares by orthogonal decomposition using House-
holder transformations (Golub and Businger (1965), Hanson and Lawson
(1969)). Depending on the rank of the design matrix A of a least
squares problem Ax : b the algorithm takes the following actions:

- if matrix A is well conditioned (full rank) this algorithm finds
a standard, unique least squares solution x that minimizes
Ax - b .

- if matrix A is rank-deficient the algorithm determines the effective
rank k of matrix A and finds the so called minimum length solution
x that minimizes both: ljAx - bil and lixil. This solution is also
unique. The effective rank k is the rank of the matrix W that re-
places A as a result of a specific computational algorithm.

- if matrix A has theoretically full rank, but inevitable small changes
in the data of the order of magnitude of data uncertainty could convert
the matrix to one of deficient rank the.algorithm replaces A by
a 'nearby' rank-deficient matrix, say, A , (Lawson and Hanson,1974,
p. 79, eq. 14.8), and then computes a minimum length solution to the
slightly different problem Ax '- b.

The last case is the ill-conditioned case and is traditionally
disregarded by standard algorithms that solve least squares problems.
Indeed, it is a difficult problem to handle numerically, and (if not
properly treated) can lead to very unstable, inaccurate solutions.
The rank of the matrix A that replaces A as a result of a specific
computational procedure is called the pseudorank of A. Pseudorank (or ef-
fective rank) is not a unique property of Matrix A, but also depends on the
details of computational algorithm, the values of assumed tolerance parameters
and the effects of machine round-off errors.

Generally, the algorithm (Lawson and Hanson, 1974, p. 78) determines

the orthogonal matrices Q , K and the permutation matrix P in the
following steps:

DECOMPOSITION

a) find orthogonal matrices Q, P such that

A = QTR pT, or

QAP=R R R12  1 k
k AP= -- 0 Rz2 ) m-k

-k n- k
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I- where, R is upper triangular, R11  is nonsingular and k = pseudorank
of A.

- - b) construct vector

Qb :cJ
i C2  }m-k

c) find an orthogonal matrix K such that

A =QT 0Tk]
0" R22 0 In-k

~or

[R11  R12]K = [W 0 _ k

on -k

where W is nonsingular, upper triangular matrix.

SOLUTION
a) solve for the unique k-vector Yi from the nonsingular equation

. • .. Wyl Ci

and set Y2  arbitrary

b) the solution vector .is found as follows:

S[K o] Iy] }k
" In-k Y2  }n-k

c) the residual norm can then be computed as lb-Axl =Iic 211.
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d) the variance-covariance matrix of the solution vector x for the
full rank case (k=n) is proportional to

C: = PR1 (R )T pT

(Lawson and Hanson, 1974, p. 68, eq. 12.10)

Both orthogonal matrices Q and K are products of a number of elementary
Householder transformations.

Remarks on the algorithms:

- The described algorithm solves directly the original least squares
problem, it means the system of observation equation with rectangular
design matrix A: AX-D. (the formulation of the so-called normal
equations is avoided).

- Because the orthogonal decomposition of A is found, there is no
(explicit) matrix - inversion.

One may think that using a general inverses approach (presented
by Householder method) one has to resign from statistical indicators
as covariance matrices (which are formally related to the normal matrices
(symmetric, positive definite)). This is not true, as can be found
in Lawson and Hanson (1974, pp. 67-73). It turns out that using the
computed components of the Householder's orthogonal decomposition,
one can construct the required covariance matrices in a cheap, effec-
tive and stable way.

4.2.2 Method of Linear Least Squares with Linear Equality Constraints
by Downweighting.

During the 1929 adjustment of the levelling net of the U.S. the
heights at each of the 26 geodetically connected tide gauges were con-
strained to zero through a linear equation of the type

hi = 0, i=1, 2, ... , k (hi stands for the height at tide station i)

or generally

Ch =f (5)

In the adjustment of our model-net we also wish to impose zero-
constraints on grid points bordering upon the sea. As can be found
in Lawson and Hanson (1974), this can be done simply by entering the
associated constraints equations (5) before our original observation
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equation system (2) or (4). Next, the set of the original observation
equations (4) should be downweighted by premultiplying by some small
quantity c to be chosen by the user. This quantity establishes the

*compromise between the usual least squares solution of the unconstrained
system (4) and the closeness of fit to the prescribed constraints (5).
However, the internal relative importance of each equation in the un-
constrained system (4) expressed by the weights associated with the

'1original observations (Section 4.1) is preserved during this down-
weighting operaiion. Summarizing, we tombine observation equations
Ah = ah and constraints equations Ch = f into one linear system:

[I CI
C] h = (6)

This system can be solved for the height vector h using the method
of Householder orthogonal decomposition described in the previous
section.

It should be mentioned, that in our case of zero-constraints vector
f in (6) is set to 0.

Altogether, this numerical procedure is called in the literature,
the least squares method with linear equality constraints by down-
weighting (Lawson and Hanson, 1974, p. 148-158). And as mentioned
already, the small parameter E expresses the compromise between the
closeness of fit to the values prescribed by the constraints and fi-
delity to the unconstrained least squares solution of the original
system.

Ah = Ah

Powell and Reid (1968) have proven the stability of this method, provided
the Householder transformations are used, and constraint equations
are placed on the top of the original system (2).

4.2.3 Comparison with Normal Equations Method

It can be shown (Lawson and Hanson (1974), p. 122) that for a mxn
matrix A the Householder method applied directly to least square prob-
lem Ax = b, requires mn2 + M3 /3 operations (by an operation we mean a
pair: addition - multiplication). The traditional method by normal
equationt requires mn2/2 operations to form the normal equations

- -, AtAx = A b, and n 3/6 operations to solve normal equations using
Cholesky's method. Therefore, Householder method is twice as expensive
as the traditional normal equation method. On the other hand using
computer arithmetic of the given precision the Householder method
produces twice as many significant digits in the solution as the
normal equation method does. In other words, to assure the same quality
of results we have to double the computer precision while using
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normal equations method. For large systems of equations it leads quicklyto computer-storage problems.

Conclusion: on a given computer the Householder method can handle
larger problems than the normal equation method can.

Lawson and Hanson (1974) give the following simple example of
the loss of significant digits using normal equations method:

A 1
;.1 1-e:

The normal equations matrix AT A is to be formed on the computer
with the relative precision n Suppose the value of c is such,
that it is significant to the problem, E > lOOn say, but E2 < n
so that 1-c 1 1 but J+E2 is computed as 3. Thus, instead of computing

m:."3 3 E

ATA 32+2
i-" Tii 3-E 3-2c+F-2

we shall compute the matrix

3I-E 3-2c

Further computation of Cholesky decomposition of this matrix into
the product RTR , gives

.!" "IOI1rl 2]

R ::r 22]

where
r1  = 4, r12 = (3-E)/, r22  3-2E - (9-6)/3 0, while the correct
result at this point would be

r22 = 2/3 0 .
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Therefore, in the precision n no significant digits are obtained
in the element r22 . Consequently the matrix R is computed as
singular. On the other hand, when the Householder transformation is
applied to triangularize A directly, without forming ATA , we get
the matrix

3

which is nonsingular.

The important point in the Householder routine is that components
of R were computed as the difference of quantities of order of magnitude
unity. Thus, using n-precision arithmetic, these components are not
lost in the round-off errors.

4.3 The Results of Simulation of the North American Vertical Datum
Distortion Function for Different Densities of Model Networks

In Figure 12 we see the example of a synthetic network for the
array of 6x6 grid points. Points are regularly distributed and ordered
row-wise so that the densification of the net could be easily programmed.
The least squares method with linear constraints by downweighting was
used to obtain the solution to the combined system of observation equa-
tions together with constraints equations as was described in previous
section. We denote this solution by h , the actual dimensions of
linear system to be solved were for this case: 36 unknown heights
and 73 equations (60 observations + 13 constraints). The difference:
constrained solution h minus the original reference heights h0
described in Section 4.1, gives the distortion function of the vertical
datum.

d = h -

Figure 13 shows the contour map of the distortion function d
for the 6x6 network, together with the 3-dimensional view of this func-
tion. The units are cm and contour interval is equal to 2 cm. The
downweighting parameter E has the value 0.1 which is sufficient to
constrain the zero-height at tide gauges with tolerance of 2 mm. From
the contour map we see that the distortions assume the extremal values
at tide stations, where the zero-constraints were forced. The minimum
occurs at the south part of the West Coast, the maximum at East Coast,
near Florida. From South-West Coast the distortion function increases
gradually toward East. Approximately in the middle of the continent
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Figure 13. Contour map and the 3-D view of the distortion
function d (eq. 3) for the case of the 6x6

- Digital Surface Model.
The units are cm and contour interval is equal to 2 cm.
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the distortions diminish to zero and the line of no distortion passes
across the continent almost exactly in the North-South direction.
From here distortions increase again towards East and South. Of course
this particular shape of the distortion function d is a result of
a specific distribution of sea surface topography around North-American
c-.itinent shown on Figure 4. It can not be generalized to any other
continent or location.

In the next stage we densify the model levelling-network. For
the case of a 1OxlO regular grid the dimensions of the linear system
are: 100 unknown heights, and 204 equations (180 observations + 24
constraints). Figure 14 shows the contour map and the 3 dimensional
view of the distortion function d for this case. The contour inter-
val is equal to 2 cm and the downweighting parameter E=0.1, which
is enough to constrain the heights to zero at 24 'tide gauges' with
the tolerance of 1 mm. The distribution of the distortions over the
continent is very similar to the previous case.

Finally, in Figure 15 the contour map and the 3-dimensional view

of the distortion function for the 15x 15 grid is shown. Units are
cm and contour interval is equal to 2 cm. The downweighting parameter
e is equal to 0.2 which is sufficient to constrain the heights to
zero at 35 'tide gauges' with the tolerance of 1 mm. For this case
the system of 445 equations with 225 unknowns was solved. The general
behaviour of distortion function is again similar to the previous ex-
amples.

Summarizing the above results we can formulate the following general
remarks:

- the maximum (in magnitude) distortions in the vertical datum occur
at the tide gauges, where incorrect zero-constraints were forced:

- the extreme distortions values are: -20 cm at the South part of
West Coast and +21 cm at the South Part of the East Coast;

- in the center of the continent the distortions never exceed those
at the tide gauges;

- the shape of the distortion function is not sensitive to the density
of grid, it is a result of a particular distribution of the SST along
the coasts of the continent;

- the line of no distortion passes through the middle of the continent
in the meridional direction;

- the vertical datum was warped in a smooth way, which means there
is no unexpected extremes (local minimums or maximums) in the center
of continent, and there is no long or short-wavelength periodic effects.

The last remark may come from the fact that our synthetic network
was very sparse, which is equivalent to the smoothing effect. On the
other hand, the general shape of continental topography (which is imaged
in the input data) is very unsymmetric, with high mountains on West
Side and plains on East. Nevertheless, the topography does not seem
to affect the shape of the distortion function.
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Of particular importance is the existence of the zone of no dis-
tortion. It indicates that along North-South span, right in the middle
of the continent the heights are not affected by error due to the
twist in the vertical datum. In other words, the equipotential surface
implied by the zero-height for points inside this zone could represent
the mean regional geoid for the North American continent. At all other
points heights refer to the different equipotential surfaces which
deviate from the mean regional geoid exactly by the particular value
of the distortion function d . It means that on adding the distortion
function d , all heights on the continent would refer to a single
equipotential surface.

4.4 The Proper Procedure for the Adjustment of a Levelling Network
and the Definition of the Geoid

In Section 4.2 it was shown that forcing the zero-height at more
than one tide gauge introduces errors in the adjusted heights of the
order of the variation of SST at tide stations chosen. In order to
avoid this effect we should allow for a minimum-constraints solution,
where a single point is assigned an a priori value. After the network
is adjusted the computed heights of tidal stations should be statis-
tically tested against the MSL heights determined by the oceanographic
method. Next, the vertical translation of all adjusted heights could
be designed in order to minimize the differences between the MSL values
and the adjusted heights at tidal stations in some least squares sense.
Heights obtained that way would refer to a single equipotential surface.
This surface could be regarded as the definition of the geoid in the
regional sense. It would have the property of minimizing the Sea Surface
Topography variations over the given set of tidal stations. Therefore,
such a regional geoid would depend on the particular configuration
of tide gauges used. The conceptual difference between the regional
geoid introduced here and the geoid itself is the following: The geoid
(at least in the oceanographic sense) is the equipotential surface
of the earth's gravity field that most closely (in some more or less
formalized sense) approximates the MSL in the global context. The region-
al geoid (for a given continent) is that equipotential surface of
the earth's gravity field that most closely approximates in the least
squares sense the MSL variation over the discrete set of coastal points
(tide gauge locations). The vertical datum implied by the regional
geoid would define the zero-level that on average agrees with the MSL
along the oceanic coasts of the region. Essentially one-dimensional
information on the MSL variation along the coastal line (sampled at
the tide gauge locations) is needed to define the regional geoid,
whereas the areal distribution in the two-dimensional global sense
is required to define geoid.

Another way to avoid distortions in the adjusted vertical datum
is to perform an unconstrained adjustment. Of course the linear system
that arises from this problem is singular and can not be solved by
standard methods of normal equations. On the other hand the House-
holder orthogonal decomposition (presented in Section 4.2.1) is well
suited for rank-deficient systems. In such case the algorithm produces
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the so-called minimum length solution which is unique in this sense.
Next, this solution could be block-shifted in vertical direction to
meet certain conditions at tide gauges, which were described in the
last paragraph.

In order to find out the differences between those two methods
a synthetic network of 7 by 7 grid points was adjusted exactly the
same way as described in Section 4.1. The only difference was, that
a single zero-constraint was imposed on point at the North-West corner
of the net, just to keep the full rank of linear system. At the same
time an unconstrained minimum length solution was obtained for the
same case of the 7x7 network. Then, this solution was block-shifted
so that the height at North-West corner of the net became zero
(exactly like in the single-constraint solution). Figure 16 shows
the difference between the nn-constraints and the single-constraint
solution. The units are 10-12 m. The maximum difference was 4-10 - 12 m,
which indicates that solutions differ only on the order of round-off
errors.

The above example indicates that both methods produce equivalent
results. Either one can be applied in real-life situations.

5. THE DESIGN OF THE MODEL HEIGHT-ERROR FUNCTION DUE TO THE
INCONSISTENCIES IN THE GLOBAL VERTICAL DATUM

Now we are in the position of constructiong the global model of
the height-inconsistency function Ah(O, x) caused by the inconsis-
tency between the different vertical datums in the world. In the
spatial sense ah(o, x) is understood to be a function of geodetic
latitude 0 and longitude x . We are interested only in the effects
related to the uncertainties in the Sea Surface Topography values or
due to the improper numerical procedure during the adjustment of
levelling networks.

The reference surface for the construction of Ah(o, x) is theequipotential surface implied by the Lisitzin's global average value

of 280 dyn.cm of the SST variation (Lisitzin, 1965). This value was
derived based on the 4000 dbar isobaric depth.

The function Ah is modeled as the patchwise step function as-
suming constant values over specific vertical datums. Such constant
values refer to the sea surface topography at a particular tide gauge
which was constrained to zero during the general adjustment of level-
ling net. In case where more than one tide gauge were constrained
to zero (N. America) the average sea surface topography at all such
tide gauges was chosen to represent the correction Ah over this par-
ticular vertical datum. This value was estimated based on the partic-
ular distribution of SST around the perimeter of the continental level-
ling network. The Lisitzin's deep-ocean Sea Surface Topography as
shown on Figure 1 was extrapolated towards the locations of tide gauges
which took part in the adjustment of the levelling net.
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-: At the ocean areas the Lisitzin's Sea Surface Topography values
are assumed to represent the discrepancy Ah between the MSL and our
reference geoid implied by the 280 dyn.cm global average.

More specifically, over the continental plates we imposed the
following constant values for Ah(o, x):

a) North America
In the 1929 levelling net adjsustment 26 Primary Tide Stations were
used as the reference zero-level. The average value of Sea Surface
Topography over those 26 stations is -4 cm. The Sea Surface Topography
variation and the location of the tide gauges is shown on Figure 4.
Therefore, the value of Oh(, ) over the North American Continent
was chosen as -4 cm. The choice of the constant value of the distortion
for the case of the American continent should be understood as merely
an approximation. Due to irregular distribution of SST and improper
numerical procedure in the 1929 adjustment the distortion function
is not constant but actually reflects an irregular internal warp in
the continental vertical datum. This will be studied in the sequel.
b) South America

No information is available on vertical datum or datums on this continent.
However, since we are interested in the general effect of discrepancies
of the order of variations of the SST, it is sufficient to numerically
simulate a particular value of Ah in this area. Let us assume that
the unified continental levelling net was constructed and the adjustment
was done with a single zero- constraint at a given tidal station.
Suppose this tide gauge was located in Buenos Aires where the Sea Sur-
face Topography with respect to 280 cm reference is -40 cm (see Figure
10). In such case the value of h(O, 1) over the S. American Con-
tinent will be -40 cm. The choice of the master tide gauge in Buenos
Aires is quite arbitrary. From Figure 10, we see that if we chose
any other location along the coastal line we would get the values ranging
from -80 cm to +20 cm.

c) Europe
The adjustment of the United European Levelling Net was carried out
with respect to a single fixed datum point in the Netherlands: Normal
Amsterdam Peil (NAP). At this tide station the sea Surface Topography
with respect to 280 cm reference is -55 cm (Figure 8). Therefore,
the value of Ah(, x) over Europe could be taken as -55 cm (Lisitzin,
1974, p. 163).

d) Africa
There is no information on the levelling net adjustment on this con-
tinent. Therefore, assume the unified continental levelling net was
adjusted with a single zero constraint at the tide gauge at Lagos.
The Sea Surface Topography at Lagos with respect to 280 cm reference
is -10 cm (Figure 11). Therefore, the Ah(o, x) can be taken as -10
cm over the whole African Continent. The choice of master tide gauge
at Lagos is again arbitrary. If we pick at random a point on the coast
line we would get the values for the distortion function ranging from
-60 cm to about +60 cm (Figure 9).
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e) Asia
There is no information on the levelling net adjustment on this continent.
There, assume the unified continental levelling net was adjusted with
a single zero-constraint at Leningrad. The Sea Surface Topography
at Leningrad with respect to 280 cm reference is approximately -30 cm

-~ (Figure 9). Therefore, the value of Ah(o, x) over Asia will be taken
as -30 cm. If we pick any other location for the master tide gauge
we would obtain different values for the distortion function ranging
from about -120 cm to about +80 cm.

f) Australia
The adjustment of the Australian Height Datum (1971) was carried out with
the heights fixed to zero at 30 tide gauges around the coast of the
continent. The Sea Surface Topography average over those tide gauges
(with respect to 280 cm reference) is +35 cm (Figure 6). Therefore,
the value of Ah(4o, x) over Australia could be taken as +35 cm.

On the other hand, the free network has been calculated (Mitchell,
1972) with a single constraint at Jervis Bay, where the SST is equal
to 30 cm. Since a single constraint approach is more accurate than
the overconstrained problem (as was shown in Chapter 4) we will use
the value of +30 cm to represent tAh at this area.

2-;g) Antarctica
.J. There is no information on the vertical datum on this continent, neither

is there on Sea Surface Topography below the latitude 60 South. There-
fore, Antarctica will be treated as the ocean area. The constant value
of Ah(o, x) over Antarctica will be taken as zero cm.

In order to study separately the effects of different components
of the height-error function Aho x), we constructed three different
global models of this function Ahl, Ah2, Ah3, proceeding from the
simplest to the more complicated one.

Numerically, all our models are constructed as a set of 64800
mean values based on the lox 10 blocks covering the earth's surface
in a regular equiangular grid. The continental outline with the
10x 10 resolution was obtained based on the set of lox 10 mean land
elevations and ocean depths provided by the Defense Mapping Agency
Aerospace Center in 1979 (archived as file no. 11 on the GS160 mag-
netic tape, Department of Geodetic Science and Surveying, The Ohio
State University).

Figure 17 shows the three-dimensional view of function Ah, which
is a simple patchwise step function assuming constant value over different
continental plates:

*-4 cm over N. America
-40 cm over S. America
-55 cm over Europe

-10 cm over Africa
-30 cm over Asia
+30 cm over Australia
0 cm over Antarctica
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The reasoning for such values was given above. In the ocean areas
our step function Ah, is set to zero, which amounts to the assump-
tion that the mean sea level coincides with our model geoid. The pur-
pose of this first model is to reflect the relative displacements between
different continental vertical datums. The individual vertical datums
are considered here the undisturbed flat reference surfaces. The range
of Ah, values used in this numerical model is from -55 to +30 cm.

In our second model-function Ah2 , we introduce the SST variation

over the ocean regions. The continental values of Ah2 are exactly
the same as in the first model. The purpose of this model is to reflect
the relative displacements of different vertical datums, understood
as the rigid vertical shiftings between the undisturbed continental
reference planes, against the slowly varying SST over the oceans.
Figure 18 shows the 3-dimensional view of the model 2 error function.
The magnitude of Ah2 varies within the interval (-160 cm, +120 cm).
The values of the Sea Surface Topography were generated using the sub-
routine LISITZ by Kostas Katsambalos, of the Ohio State University
in 1977. This subroutine uses the digitized values of SST from the
Lisitzin's world chart (Lisitzin, 1974, Figure 1) on the 10'x 100 grid.
The method of linear interpolation is used, and the Lisitzin's global
average of 280 dyn. cm was removed. Katsambalos (ibid.) estimates
the accuracy of the routine as +10 dyn.cm. The subroutine LISITZ gives
values of SST only between Latitudes +60 and -60. Therefore, beyond
this range we assume the zero value to represent our Ah2 function
(Figure 18.).

The third and most complex model is shown in Figure 19. It differs
from model 2 function only in the values over the N. Americal continent.
Instead of the constant reference level, the vertical datum distortion
function d introduced in Section 4.3 was used to represent Ah3 over
this continent. The values of the distortion function d were con-
structed based on the grid of 15x15=225 values shown on Figure 15.
Between grid points, the 1°x 10 values were estimated using the six-
point weighted moving-average prediction method (Davis, 1973). The
purpose of this third model is to reflect simultaneously all three
possibile sources of vertical datum inconsistencies: the relative
rigid displacements between the continental flat reference levels,
the SST effect over oceans, and the internal vertical datum distortion
due to improper numerical procedure during the levelling-data adjustment.
The range of Ah3 values falls in the interval (-160 cm, +120 cm).

We can expect, that all three components of the height inconsistency
function will contribute to the errors in various gravimetric quantities.
The next section will discuss that problem.

2.4
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- Sea Surface Topography over oceans
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6. THE EFFECT OF THE INCONSISTENCIES IN THE GLOBAL VERTICAL DATUM
ON THE DETERMINATION OF SPHERICAL HARMONIC COEFFICIENTS OF THE GEOPOTENTIAL
FROM GRAVITY DATA - THE MODELLING STUDIES

In this section we evaluate the effects of vertical datum inconsisten-
cies on spherical harmonics coefficients of the Earth's gravitational
potential. The three different models of height inconsistency function
(developed in the previous chapter) will be used as the basis for this
study.

6.1 The Spherical Harmonic Analysis of Different Models of the Height
Inconsistency Function Ah

First, we compute the set of corrections to the spherical harmonic coef-
ficients of Earth's gravitational field based on the spectral analysis
of the three model functions Ahl, Ah2 , and Ah3.

Consider the spherical harmonic expansion of Earth's gravitational
field in the form

V - kM (1 + Z (a)n n (CnCOS(mA) + sin(mx))n (sin )) (7)
r n2 r mX0 nmco~x nm nm, r n=2 m=O

where (Heiskanen and Moritz, 1967):

C cos(mx)

= 4ff Ag* Tnm(Sin do (8)

S(nm  sin(mx)

G - average value of gravity (979.8 gals; Gravity Formula 1980)

Ag* - mean gravity anomaly in blocks whose size is do.

kM - geocentric gravitational constant

r - the distance from the coordinate origin to the point of
evaluation

a - a nominal earth radius

XO , - longitude and geocentric latitude of the point of evaluation

Pnm - fully normalized associated Legendre function of degree n
nm and order m.
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In formula (7) we assume that the coordinates origin coincides with
the center of mass of the earth (no first degree term in the expansion).

Values of the potential coefficients are most currently found
from the analysis of satellite data or through a combination of gravi-
metric and satellite data (Rapp, 1973). However, we assume here that
the coefficients are computed from terrestrial gravity anomalies using
formula (8).

Let's assume Ag* refers to the idealized geoid - for the purpose
of this modelling study it will be taken as one implied by the Lisitzin's
average sea surface topography of 280 dyn.cm. Equation (8) produces
coefficients centered with respect to a reference field implied by
the normal potential of the level ellipsoid which most closely approxi-
mates our idealized geoid.

Actually, instead of the theoretical Ag* , we have access only
to anomalies Ag which were reduced from observed surface anomalies
to a 'geoid' in a best possible way. The problem is, that such a'geoid'
is not unique but is implied by the zero-level of a local vertical
datum. Since the zero-height is established in connection with mean
sea level surrounding a given continent, and since mean sea level differs

- from the equipotential surface of the true geoid by irregular Sea Surface
Topography, different vertical datums in the real world define different
equipotential surfaces of the actual gravitational field V . In other

*. words, the zero-height implied by different vertical datums is not unique
but varies from datum to datum by the amount probably in the order of
sea surface topography variation. From the above, we can conclude that
available global mean gravity anomaly data Ag should be further reduced
to our model goid by the height difference between the zero-height im-
plied by each vertical datum and the zero-height implied by our model
geoid. Let us denote this height difference by Ah . Since for most ofthe world too little information is available on actual vertical datums,

their interrelation with respect to our model geoid can not be precisely
determined. Therefore, for the purpose of this study we will use the
three models of our discrepancy function constructed in the previous
chapter. Functions Ahl, Ah2, Ah3 will serve as the three different
approximations to the actual height-inconsistency function Ah
Therefore, the results obtained should be considered as an approximation
to the actual impact of the true vertical datum-error on geopotential.
Suppose we had been given gravity anomalies Ag which are considered
to be reduced to the geoid implied by an individual vertical datum D
Originally, Ag were computed from the formula (Heiskanen, Moritz, 1967):

A. ag= gobs ah (9a)

where

gobs- observed value of gravity
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a- vertical gradient of gravityah

hD height difference between the surface point of the measurement
and corresponding point on the geoid (implied by the vertical
datum D).

y - normal gravity on the reference ellipsoid

On the other hand, introducing the height correction Ah from the

particular local geoid implied by datum D to our model geoid implied
by the Lisitzin's SST global average, we are interested in the more
accurate reduction of gravity data given by tne formula:

= gb (hD + Ah) - y (9)
Ag* = obs -ah

where Ah is the height inconsistency function. The Ag* values
obtained from (9) should be used in eq. (8).

Now we can compute the change in gravity anomaly caused by the
introduction of our additional height correction Ah:

6A- = Ag* - Ag = Ah 7 0.3086 Ah (mgal)(where Ah in meters)ah

which has the form of the free-air correction. Here Ah represents
the values of our height correction function Ah(o, x), and could be
approximated by our model-functions Ahl, Ah2 , Ah3.

Now, we can compute the corrections -Cnm, 6Snm to potential
coefficients implied by the assumed inconsistencies in vertical datuns
Ah:

6nm 0cos mA
=0.3086E-5 Ah( , x) nm(Ssin i) do (10)

Snm 41TG(n-l) a sin mX

where Ah(o, x) (in meters) is height inconsistency function described
in Section 5. The other symbols are explained after formula (8).

Instead of the theoretical function Ah the approximations Ahl ,
Ah2 , and Ah3 described in Chapter 5 were used. The actual integration
was carried out using Fast Fourier Transform method implied in the FORTRAN
subroutine HARMIN described by Colombo (1981). The subroutine was
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run using integrated associated Legendre functions for geocentric lati-
tudes, and the optimum smoothing factors recommended by Colombo. The
advantage of HARMIN is its very efficient calculation procedure. Using

this program a discrete spectral analysis up to degree 180 was performed
on the three different sets of 64800 1°x 1 block-values representing
our model height-inconsistency functions Ahl, Ah2, and Ah3. As a

result three different sets of correction coefficients aCnm, oSnm
were generated.

The magnitude of the computed correction coefficients was tested
against the magnitude of potential coefficient obtained by Rapp (1981)
from the combination of the terrestrial gravity data, SEASAT altimeter
data, and other satellite-derived data (see formula (8)). The degree
variances of correction coefficients up to n=180 were evaluated according
to the formula:

n
C2  (C2 + S2(11)n,6 .=nn mn0

The relative magnitude of corrections with respect to the reference
coefficient (Rapp, 1981) can be expressed by the ratio:

Rn  z (12)
nn

where,

n
-2 2 + 2
n " nm nm

represents the degree variances of reference coefficients Cnm, Snm.

Figures 20, 21, and 22 show the relative magnitude of correction
coefficients Rn obtained for our model datum-inconsistency functions
Ahl, Ah2 , and Ah3  respectively. In all three cases the correction
coefficients bear significant contribution to the original coefficients
only up to degree 60. Above degree 60 the spectrum flattens, and the
individual relative errors do not exceed the magnitude 0.002 for the
case of Ah2  and Ah3 , and 0.001 for Ahl. We conclude that the
effect of vertical datum inconsistency is mostly of long wavelength
nature, and that for higher frequencies the relative error in the co-

, ...'. efficients is on the order of the background noise. The distribution
of the relative errors in the frequency domain for models Ah2 and
Ah3 , as shown on Figures 21 and 22 respectively, is very much alike,
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although the inclusion of the internal distortion of the North American
datum (function Ah3) caused slightly higher relative errors for most
degree variances (see also Table 1).

Table 1 shows the comparison between the magnitude of relative
errors in potential coefficients expressed by formula (12) for three
different models of vertical datum inconsistencies represented by
functions Ahl, Ah2 , and Ah3. The maximum individual relative error
(by degree) in coefficients for the simplest model represented by
Ah, (no SST included) occurs at degree 4 and has the magnitude of
0.00253 (0.253%). For the other two models which include SST the max-
imum relative error is about 0.009 (0.9%) and occurs at degree 6.
Comparing the effects of Ah, (simple step-function, no SST) with those
of Ah2 or Ah3  (SST included) we conclude that the variation of
SST over oceans brought about a significant increase of power spectrum
of correction coefficients. The models containing SST produce the
spherical harmonics coefficients that are much larger in magnitude
than those produced by a simple step-function Ah1 . The addition
of Sea Surface Topography had a very large effect of magnifying the
errors more than 3 times. The oceans cover more than 70% of our globe,
and therefore the variations over oceans determine the overall character
of the inconsistency model. If we multiply (12) by 100 we obtain the
average percentage correction to potential coefficients due to the
datum inconsistency. From Table I we conclude that the global datum
inconsistency can produce a significant error in the determination
of potential coefficients. For low degree harmonics the relative error
can be on the order of 1 percent. By significant we understand the
error of the relative magnitude reaching 1% level.

The spectral analysis of our three models of the spatial incon-

sistencies in the global vertical datum (as represented on Figures
20, 21 and 22) shows significant effect only on the low degree harmonics.
This is a result of the specific nature of our approximating functions
Ahl, Ah2 , and Ah3 (see Figures 17, 18 and 19). All of them represent
a flat or slowly varying surface, showing no local features of short-
wavelength characteristics (except perhaps discontinuities along con-
tinental edges). Therefore, the particular distribution of energy
in the spectrum could have been expected. We should mention also that
the digital model of SST used in the computations was based on the rather
crude 10°x 100 grid, and this certainly could add up to the overall
smoothing of the distortion spectrum (high-cut filter effect).

More than two thirds of the entire energy in the spectrum comes
from the discrepancy between MSL and the geoid over the oceans, as
could be seen by comparing the first column with the second or third
columns in Table 1. The relative error due to the internal distortion
in the N. American vertical datum contributes very little to the
cumulative effect; however, it may be significant in some applications.

6.1.1 The Error (by Degree Variances) in Geoid Undulations, Gravity
Anomalies, and Deflections of Vertical due to Vertical Datum Incon-
sistency Models

The magnitude of correction coefficients 6Cnm, 6Snm can also
be expressed in terms of the geoid undulation degree variances.
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L "Table 1

The Relative Error in Potential Coefficients (by Ratio of Square
Root Degree Variances, eq. 12) due to the three Vertical

Datum Inconsistency Models: Ah1 , Ah2 , and Ah 3.
(Unitless quantities)

DEGREE(N) Ah1  Ah2  Ah3

2 3.62E-05 t.37E-04 I.36F-04
3 2.11E-03 4.76E-03 4.93E-03
4 2.53E-03 8.14E-03 8.13E-03
5 1.83E-03 5.96E-03 6.32E-03
6 2.13E-03 9.08E-03 9.IOE-03
7 1.39E-03 4.03E-03 4.05E-03
8 1.79E-03 5.04E-03 5.•2E-J3
9 2.15E-03 4.31E-03 4.42E-03

10 1.83E-03 5.22E-03 5.26E-03
11 1.72E-03 5.70E-03 5.65E-03
12 2.44E-03 7.75E-03 7.84E-03
13 1.42E-0J3 3.86E-03 3.8)E-03
t 1.90E-03 4.82E-03 4.92E-33

. 15 2.37E-0 3 5.75E-03 5.83E-33
16 1.43E-03 5.70E-03 5.71E-03
17 2.OOE-03 5.30E-03 5.29F-33
18 .61E-03 5.12E-03 5.14E-03
19 2.OOE-03 4.58E-03 4.56E-33
20 2.35E-03 4.19E-03 4.19S-13
21 2.05E-03 3.8IE-03 3.94E-03
22 1.43E-03 4.98E-03 5.02E-33
23 1.79E-03 4.74E-03 4.72E-03
24 1.55E-03 4.70E-03 4.73E-03
25 1.56E-03 4.28E-03 4.26-03
26 1.91E-03 3.52E-03 3.62E-03
27 1.83F-03 4.37E-03 4.40E-03
28 1.7ZE-03 5.07E-03 5.06E-03

. 29 1.71E-03 4.13E-03 4.17E-03
* 30 1.77E-03 4.66E-03 4.63E-03

31 1.74E-03 4.09E-03 4.11E-03
32 1.86E-03 3.42E-03 3.4LE-03
33 1.65E-03 2.89E-03 2.88E-j3
34 1.44E-03 3.99E-03 4.01E-03
35 1.46E-03 3.76E-03 3.78E-03
36 1.68E-03 4.OOE-03 4.OtE-03
37 1.24E-03 2.47E-03 2.48E-03
38 1.41E-03 1.98E-03 1.98E-03
39 1.30E-03 2.05E-03 2.06E-03
40 1.03E-03 2.72E-03 2.75E-03
41 1.07E-03 2.43E-03 2.43E-03
42 1.10E-03 2.9EE-03 2.92E-03
43 1.09E-03 Z.57E-03 2.56E-03
44 1.09E-03 1.99E-03 2.00E-03
45 9.63E-04 1.83E-03 1.83E-03
46 9.96E-04 2.64E-03 2.64E-03
47 9.0OE-04 2.05E-03 2.06E-03
48 1.11E-03 2.91E-03 2.92E-03
49 1.01E-03 2.45E-03 2.4TE-O1

,' 50 7.58E-04 1.53E-03 1.53E-03
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Xn- R m0 + n Smnm )  
(13),, " -:m=O

where R denotes the mean earth radius. The contribution to the geoid
undulation in terms of the square roots of undulation degree variances
due to our three models of the inconsistencies in global vertical datum
is shown in Figures 23, 24 and 25 respectively. In Table 2 we compare
the effects (up to degree 50) on geoid undulation produced by our three
models of vertical datum inconsistencies Ahl, Ah2 and Ah3. The
maximum square root of undulation degree variance was computed as 11.16 cm
(at degree 2) for the first model, 42.38 cm (at degree 2) for the second
model and 42.05 cm (at degree 2) for our third model.

The existence of the zero degree unulation term in the error spectrum
can be interpreted in the following way. Theoretically, if we evaluated
the anomalous gravity potential T with respect to the reference normal
potential of the level ellipsoid, which is chosen to have a mass equal
to the mass of the Earth and potential equal to that associated with
the geoid, then the zero-degree coefficient in the spherical harmonic
expansion of T or undulation N would vanish. This is true only
if the terrestrial gravity data used were properly reduced to the geoid.
The geoid is approximated by a given level ellipsoid which induces
normal gravity used in the gravity data reduction. Geometrically this
approximation means that the average (over the unit sphere) deviation
of the geoid from the reference ellipsoid is zero, and the origin of
the ellipsoid coincides with the center of mass of the Earth.

In practice however we deal with the gravity data that have been
reduced not to the idealized geoid, but to some nearby surface which
is not necessarily the equipotential surface. Let us for the moment
call this surface a pseudogeoid. The height error function Ah
described in the previous chapter represents precisely the deviation
of pseudogeoid from the geoid. In the frequency domain, this de-

.. viation is represented by the error power spectrum xn, that is by
the various harmonic components of the difference:

{pseudogeoid undulation} - {geoid undulation} : 6N

The non-vanishing zero degree undulation term in the error spectrum
shows that the average height of the pseudogeoid with respect to our
reference normal ellipsoid does not reduce to zero. The detailed inter-
pretation of the zero-degree term can be found for example in Heiskanen
and Moritz (1967). In geometric terms the semimajor axis of the mean
best fit ellipsoid associated with the pseudogeoid differs from the
semimajor axis of the normal ellipsoid associated with the geoid by
the amount expressed by the zero degree term in the error spectrum.
By the best-fit ellipsoid implied by the pseudogeoid we understand the
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Table 2

The Error in Geoid Undulation (by Square Root Degree Variances up to
Degree 50, see eq. 13) due to the three Vertical Datum

Inconsistency Models: Ahl, Ah2 , and Ah3.
Units are cm.

DEGREE(N) Ah, Ah2  Ah3

0 10.562 3.369 3.738
2 11.162 42.384 42.051
3 3.996 9.008 9.239
4 2.562 8.241 8.229
5 1.3SO 4.406 4.453
6 1.218 5.192 5.204
7 0.675 1.957 1.970
8 0.551 1.554 1.580
9 0.582 1.167 1.195
10 0.41104 1.179 1.188
11 0.292 0.969 0.962
12 0.258 0.818 0.828
13 0.206 0.560 O.551
14 0.164 0.416 0.425
15 0.191 0.464 0.471
16 0.136 0.540 0.541
17 0.151 0.401 0.399
18 0.112 0.356 0.358
19 0.125 0.286 0.285
20 0.111 0.198 0.198
21 0.104 0.1914 0.196
22 0.086 0.298 0.300
23 0.082 0.217 0.216
24 0.064 0.193 0.194
25 0.068 0.187 0.186
26 0.06S 0.119 0.123
27 0.058 0.139 0.140
28 0.063 0.184 0.184
29 0.055 0.132 0.133
30 0.062 0.163 0.163
31 0.048 0.113 0.114
32 0.049 0.090 0.090
33 0.048 0.084 0.083
34 0.047 0.131 0.131
35 0.042 0.109 0.110
36 0.041 0.098 0.098
37 0.040 0.080 0.080
38 0.040 0.057 0.056

"- 39 0.041 0.064 0.065
40 0.029 0.075 0.076
41 0.031 0.070 0.070
42 0.030 0.081 0.081
43 0.027 0.064 0.064
44 0.030 0.054 0.051
45 0.025 0.047 0.047
46 0.024 0.064 0.064
47 0.024 0.055 0.055
48 0.025 0.065 0.066
49 0.023 0.055 0.055
50 0.019 0.039 0.039
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Table 3

The Error in Gravity Anomalies (by Square Root Degree Variances, eq. 15)
due to the Three Vertical Datum Inconsistency Models:Ah1 , Ah2 and Ah3.

Units are micro-gals.

DEGREE(N) Ah, Ah 2  Ah 3

0 16.24 5.18 5.75
1 15.96 74.57 74.34
2 17.16 65.18 64.67
3 12.29 27.71 23.42
4 11.,2 38.32 37.97
5 8.3C 27.10 27.39
6 9.36 39.92 40.02
7 6.22 18.06 1 .i1
e 5.93 16.72 17.00
9 7.17 14.36 14.70

10 5.72 16.31 16.45
11 4.49 14.91 14.80
12 4.37 13.84 14.00
13 3.80 10.33 10.16
14 3.28 8.32 8.49
15 4.11 10.00 10.14
16 3.14 12.46 12.47
17 3.72 9.80 9.83
18 2.93 9.31 9.35
19 3.46 7.92 7.89
20 3.24 5.78 5.79
21 3.21 5.97 6.01
22 2.77 9.62 9.70
23 2.17 7.33 7.31
24 2.25 6.82 6.37
25 2.51 6.91 6.88
26 2.49 4.50 4.72
27 2.33 5.56 5.59
28 2.60 7.o,4 7.63
29 2.35 5.69 5.74
30 2.77 7.29 7.25
31 2.23 5.23 5.25
32 2.33 4.28 4.26
33 2.34 4.12 4.10
34 2.38 6.83 6.66
35 2.21 5.71 5.74
36 2.22 5.27 5.29
37 2.22 4.43 4.45
38 2.29 3.22 3.21
39 2.39 3. T6 3.77
40 1.72 4.52 4.58
41 1.89 4.29 4.29
42 1.92 5.09 5.11
43 1.77 4.16 4.15
44 1.95 3.56 3.53
45 1.69 3.21 3.20
46 1.67 4.43 4.42
47 1.70 3.89 3.90
48 1.80 4.72 4.74
49 1.66 4.03 4.07
50 1.44 2.91 2.92
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Table 4

The Error in Deflections of the Vertical (by Square Root Degree
Variances, eq. 17) due to the Vertical Datum Inconsistency Model Ah3.

Units are Seconds of Arc.

DEGREE(N) Ah3
2 -333-02

3 i. 04E-02
4 1.19Z-02
5 7.0E-03
6 1.09E-02
7 -.77E-038 -.. , -O

9 G.7E-03
10 4. 032-03
11 .56Z-O0
12 0. 35E-03
13 ." 3
14
15 2.85E-03
16 2. 39
1717 2. i42-03

19 1 2DE-0320 l18E-0Z

21

23 1.
24
2526 1.051-03

27 1.2al 1.69E--3
2929 1.272-02

30 1 Z1-03

313
-4 I1 '1, Z- G3..
Q5 I1f:3E-03
269

37 9. 7.-04

013 7.02Z-04
09 3.23Z-04

4, 1 ~9. , -O,40 1. 1,7-03

43 9.6E-04
44 7. CQE-O04
'. 6.97E-04,
46 9.6 IE-04
4-7 a.422-0443 1.022,-03
49 3 E.3-04
50 6. .... .

i.' -'."-58-
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ellipsoid producing no zero-degree undulation term (Heiskanen, Moritz,
1967, eg. (2-194a)). In geometric terms, the pseudogeoid encloses
a slightly different volume than the geoid does. In other words the
volume of a thin irregular layer described by our height error function
&h does not average to 0.

This does not necessarily contradict the fact that the average
SST used as a primary component in &h was claimed to be zero.
First of all the Lisitzin's 280 dyn.cm average of SST variation was
im'plied by data irregularly distributed between latitudes +600 and -60°.
Near the poles there was no data at all.

Secondly, the 280 dyn.cm average pertains only to the oceanic
part of Earth's surface, whereas our model height error function covers
the entire globe.

In the next step of this analysis, for each model we computed the
cumulative effect on geoid undulation up to degree 180:

180 n
2 X (E- 2 + - 2) (14)
R: = nm nm

F.--n-0 m=O

This effect is 16.24 cm for function Ahl, 44.90 cm for Ah2 and
44.67 cm for model-function ah3. Again almost two-thirds of the
total effect comes from the SST variation over oceans, while the con-
tribution from the relative rigid displacements of the flat continental
datums (function Ahj) amounts only to about 16 cm. The inclusion
of the internal distortion of the N. American vertical datum had a
cumulative effect on the order of millimeters.

The cimputed effect of inconsistencies in the global vertical
datum can also be expressed in terms of the gravity anomaly degree
variances:

n

c := G2 (n-i) 2 X (C2 + -S2) , n f 1 (15)n m=0 nm nm

1
ci (r + q ), where

m=O
(15a)

:=~ O.S36E-
rm 43GE ff h (o,A) Pjm(sin c) mX do

m 47 Gsin mx

where G := the average value of gravity.
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Figures 26, 27, and 28 show the contribution to gravity anomaly
by the square root of cn (formula (15)) produced by model 1, 2, and
3. Table 3 compares the errors in the gravity anomaly represented
by the above three figures for our model functions Ahl, Ah2 and Ah3
respectively. The maximum individual errors (by degree) reach the
magnitude 0.017 mgal at degree 2 for the case of the simplest model
Ah, , up to 0.074 mgal (at degree 1) for the most complex one. Also,
we computed the cumulative error in gravity anomaly expressed by the
formula:

10 G2(n-1)2  2 ( + S2) (16)
nm nm

I This error is 0.043 mgal for the simplest model Ahl, 0.13 mgal for
model Ah2 and 0.13 mgal for the most complicated model. Again the
dominant error comes from the Sea Surface Topography variation over
oceans. The effect of distortions in N. Americal vertical datum is

*only on the order of 1E-4 mgal.

- We also computed the effect of the global vertical datum incon-
sistency in terms of deflections of vertical degree variances:

n

en (n+l) I (-C2 m -m )  (17)
m=O

Figure 29 shows the frequency spectrum decomposition of the error in
the deflection of vertical (by degree) generated by our most complex
model-function Ah3, reflecting the rigid relative shiftings of the
continental reference-planes, SST over oceans, and internal distortion
of the N. American vertical datum. The individual values were computed
as square roots of the deflection of vertical degree variances given
by formula (17). The units are seconds of arc. Also, in Table 4 we
show those results up to degree 50. The maximum individual error occurs
at degree 2 and has the magnitude of 3.33E-2 sec of arc, whereas

"K the cumulative effect up to degree 180:

/180

"0o en
n0

is 5.2E-2 sec of arc.
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6.2 Some Remarks on the Present Procedures for Determination of Spherical
Harmonics Coeffirients of Geopotential

In the previoussection we studied the effects of vertical datum
inconsistencies on the determination of geopotential, as if the only
information available was the terrestrial gravity data. However, the
most current procedure of computing the potential coefficients is through
a combination ofgravimetric and satellite-derived data (Rapp, 1973).
Those procedures use satellite data to derive low degree coefficients
and terrestrial data to supply information for the higher frequency
part of the spectrum. Thereiore, only part of the error estimated
in the previous chapter will actually contribute to the error in the
determination of the spherical harmonic coefficients. This part comes
only from the higher degree error coefficients, produced by our models
of inconsistencies in the global vertical datum.

It might be of interest to estimate the cumulative error in coef-
ficients due to the datum inconsistencies only above certain degree.
It would reflect the fact that only higher degree coefficients are
affected by errors of that nature, and that low degree harmonics are derived
in some different way. However, the satellite-derived coefficients
are affected by different sources of errors and generally are less
accurate for higher degrees. Therefore, this type of analysis could
provide an additional insight into the nature of this combined procedure.
Also, it could suggest the specific degree beyond which the terrestrial
information can safely be incorporated into the combined solution. The
idea is to balance the errors in the satellite-derived coefficients
with those inherent in the terrestrial data.

Figure 30 shows the cumulative error in the geoid undulation due
to our third model (Ah3 ) of datum inconsistency. The 6 curves on this
figure represent the cumulative contribution to the undulation (as
a function of degree n) beyond the specified degree. This truncation
degree can be found at the intersection with the horizontal axis.
To construct the curves we used the formula:

CUMULAT.ERROR.N (n) = R + Sim) ; n < 180 (18)
=p j

where the starting degree p takes on the values 10, 20, ..., 60.
From Figure 30 we learn that the cumulative error undulation, when
the summation starts at degree 10, can amount to almost 2 cm at degree
180 (the highest curve on Figure 30). If we start the summation from
degree 40 this cumulative error can reach 0.3 cm and for the summation
starting at 60 it is only 0.15 cm at degree 180 (the lowest curve on
Figure 30).

The similar type of analysis for gravity anomalies is shown in
Figure 31. The curves were constructed according to the formula:
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tency model Ah3.
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CUMULAT.ERROR. AgP(n):= G2 (i-1)2  0 (3C? m)  (19)i p m=O im I

p < n < 180 for p = 10, 20, ... , 60.

The correction coefficients 'Cnm, -Snm produced by our third model
(Ah3) of datum inconsistency were used. From the highest curve in
Figure 31 we see that neglecting the errors in the first 10 degrees
the cumulative effect (19) of errors at the remaining part of the spectrum
can reach 0.053 mgal at the degree 180. On the other hand neglecting
the errors of coefficients having degree less or equal 60, the cumula-
tive error in the gravity anomaly due to datum inconsistency beyond
this degree can only reach 0.023 mgal for n=180 (see formula (19)).

7. THE EFFECT OF VERTICAL DATUM INCONSISTENCIES ON THE DETERMINATION
OF GEOID UNDULATION FROM A COMBINATION OF SPHERICAL HARMONIC COEFFICIENTS
AND GRAVITY IN CAP

In practice, the geoidal undulation are often computed using Stokes'
equation where the global data set of gravity anomalies has been truncated
to form a spherical cap surrounding the point computation. Additionally
this truncated terrestrial data is usually supported by the long wave-
length global information in the form of low degree harmonic expansion
of geopotential. The theory of this combination of satellite-derived
and terrestrial data to obtain the geoid undulation (or disturbing
potential) originates with M.S. Molodenskii (Molodenskii et al., 1962)
and was further developed by (Heiskanen and Moritz, 1967), (Meissl, 1971),
(Jekeli, 1980) and others.

The general idea came from the fact that global gravity data is
needed in the classical Stokes' equation:

R4N G ff Ag S(o) do (20)

In the equation the symbol S(o) denotes the Stokes' function:

2n+1

n=2
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where

w - the spherical distance between the variable surface element do
and the point at which the formula is evaluated

Pn (cos)- Legendre's polynomial

Normally, if we do not associate any additional assumptions with
Ag in equation (20) the left hand-side quantity N represents the
geoid undulation from which the zero and first degree harmonics have
been removed (Heiskanen and Moritz, 1967, eq. (2-1636)), even if Ag
contains the zero and first degree harmonic components. In other words
those two components in Ag actually do not contribute to the geoid
undulation produced by eq. (20).

Usually, the information on the zero-degree undulation term N
must be supplied to equation (20) in the form of a separate term

N = No + Ag S(p) do (21)

where (Heiskanen and Moritz, 1967, p. 102):

No = RAgo + k6M (22)_." 2GR

where

R - mean radius of earth

, G - mean value of the normal gravity over the earth

6 M mass difference between the earth and reference ellipsoid

k - gravitational constant

Ago  the zero-degree component possibly present in the spherical
harmonic expansion of Ag field.

If we are using gravity anomalies in a spherical cap surrounding
the point of computation, a special correction term is needed to account
for the effect of truncation of the data domain. More specifically,
the gravity anomaly data in the cap are used with the ordinary
Stokes' kernel S(,).
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where

c - spherical ca rudthe pitof cmuain

t --G e'"  g S(i) o n (23)

n=

where

n=O

denotes the expansion of the terrestrial gravity anomalies in to the
series of Laplace spherical harmonics,

Qin d = f Smw Pn (o) sinop dop
c

tholden he truncation coefficients), and

Oc - the radius of spherical cap.

If the gravity anomaly data in the cap are used with the modified

~R

k•(erel S) - Sd(

C

R f Ag Sco 0) -Agn 0))d (5

c

then the truncation error can be expressed (Molodenskii et al., 1962) as

6N2  = QS() n (26)
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whe re

Qn f (S() -S C)) Pn() sin , d, + S(p c  Pn(,) sin d,

are known as the modified Molodenskii truncation coefficients.

*i The Agn  terms above are the Laplace surface harmonics of the
gravity anomaly field Ag. This representation can be obtained from
a priori given set of potential coefficients according to the formula:

n T* Agn = G(n-1) I (Cnmcos mx + Snmsin mx ) Pnm(cos e ) (27)n m=0

V. where

C~m, Snm - anomalous potential coefficients relative to the potentialCfield implied by the assumed reference ellipsoid

A, e polar coordinates of the point of computation

The actual computational procedure for the evaluation of geoid
44' undulation based on the above method is given by Rummel and Rapp (1976,

eq. 21) (excluding atmospheric effect) as:

-' no

R f S() Ag doc + Q G 9 (28)
n=2WC

where

" No N dNo29"_ 4,G If S(O) AgO doc  (29)

Substituting for NO  (eq. 22) and using the identity (ekeli, 1980,

eq. 123, 124):

- ff S(M) Ag0 dcc =RQ1 o Ago (30)

we rewrite equation (29) in more explicit form:
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Nqo - 6M LR ) (31)2GR 2G g (10Q)(

In order to evaluate the contribution of Ago  term to N we need
values of Q10 and Q 20 (Q20 must be used in eq. (31) if the modified

kernel was used in Stokes' integral).

It can be shown that (Molodenskii et al., 1962)

Q (,c) = -4t + 5t2 + 6t3 - 7t4 + (6t2 - 6t4 ) lnt(1+t) (32)
10 c

where

t sin

Also, it can be shown that (Jekeli, 1980 eq. 65)

Q 20(c )  Q10 + S10 c) (1 c os c (33)

In the previous section we noted that the zero-degree harmonic
component in the error in gravity anomaly field due to the inconsistency
in the vertical datum can reach the magnitude (Table 3):

Ago = 0.57 x 10-2 rgal (34)

This error component, in turn, will be responsible for the truncation
effect in the zero-degree undulation term when the anomalies in the
cap are used in the equation (28) with unmodified kernel S(p) or with
modified one: S(.) - S( ).

First we define the truncation effects on zero degree undulation
term which contribute to the quantity defined by equation (31) as:

0 R6N° G Q1o Ago (35)

or

0 R6N 2 2G Q Ag (36)

depending on the kernel used in the Stokes' integral
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Figure 32 shows the absolute values of these effects plotted as
functions of the truncation angle. We see that for small caps (trun-
cation radius Pc < 380) the modified Molodenski kernel (25) produces
smaller truncation effect than the unmodified kernel (23). For the
cap radius 'c = 38 degrees both methods produce the same truncation
effect of about 2.1 cm. If we consider larger caps (qc > 380) the
truncation effect of modified kernel is generally speaking greater
than that associated with unmodified one, and can reach 3.6 cm for
the cap 720 in radius and 11.4 cm for the full cap 1800 in radius.
This last number has no practical meaning since the global set of data
is required so in fact there is no truncation at all. It merely re-
flects the nominal limit of the expression (36) when 'c approaches
1800. We rewrite equation (36) in the equivalent form (Jekeli,
1980):

a .0 R R

6N2  4RG Ag ff S(cos p) do + 4 Ag S( c) ff do (37)
a c ac

where 0c denotes the spherical cap of radius Pc-

We see that in the limit for a. -- o180': = 0 (the area of the
unit sphere) the integral in the first term goes to O from the orthogonal
properties of Legendre polynomials and the integral in the second term
goes to 4n which is the area of the unit sphere. Therefore, for
Pc=180° we get the nominal value

lim 6 = ' S(180') = 11.4 cm.
'cP 180o 2 G

This is equivalent to computing the undulation correction from Stokes' equation.
in which the Stokes' function S(i) was replaced by the constant S(1800 ).

However, for all practical applications small spherical caps arein use. In our example the truncation effects for some typical values

of 'Pc are:

truncation angle truncation effect

.Pc unmodified kernel modified kernel

50 0.4 cm 0.2 cm

100 0.8 cm 0.4 cm

150 1.1 cm 0.6 cm

200 1.5 cm 0.9 cm
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1 - using unmodified Stokes' kernel

L) 2 - using modified kernel

L_

030 s0 90 120 ISO ISO

TRUNCRTJON RRDIUS IN DEGREES

Figure 32. Truncation effect on the zero-degree undulation term
(formulae 35 and 36) computed for the zero-degree

* - component of gravity anomaly Ago (eq. 34) due to vertical
datum inconsistency model h3 e
Units are cm.
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1 - using unmodified Stokes' kernel

2 - using modified kernel
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TRUNCRTION RROIUS IN DEGREES

Figure 33. Truncation effect (absolute value) on the zero-degree
undulation term computed according to formula 38, using
the zero-degree component of gravity anomaly Ago (eq. 34)

* due to vertical datum inconsistency model Ah3.
Units are cm.
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We see that the modified kernel produces much smaller truncation effects
than the unmodified one. In fact up to Pc= 15° the effect of unmodified
procedure can be twice the effect due to the modified one.

We can also evaluate the total magnitude of the effect on the
zero-degree undulation according to formula (31). We will not consider

k6M
2GR

term, since 6M is not known. The second term in equation (31) can
be evaluated using the constants of GRS1980 used in previous sections.

G = 9.797644 (m/s2 )

R = 6371008.7714 m

The Ago effect due to the inconsistencies of vertical datum was computed
in the previous chapter as 0.57 x 10-2 mgal (eq. 34). Using the above
constants we first find:

R
-- go = -1.85 cm

Now we can evaluate the joint effect of Ag0  on To (eq. 31), that
is: 0

R ) (38)
"_ g0(1-Q10

for different values of the truncation radius Pc. Figure 33 shows
this effect for the case the simple Stokes' kernel is used exactly as in
the basic eq. (28), and for the case a modified kernel is used in the
integral term of formula (28).

Now we will evaluate the effect of datum inconsistency, which
exists in a given set of terrestrial gravity anomalies for the case
the geoid undulations are computed according to equation (28) using
idealized values of Laplace harmonics of gravity anomaly field implied
by potential coefficients (equation 28) and a given set of surface
gravity anomalies in a cap possibly contaminated by vertical datums
inconsistency. In other words we postulate that a given set of ter-
restrial gravity anomalies data can be split into two parts:
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Ag = Ag I + 6Ag (39)

where

Ag I - idealized, consistent set of gravity anomalies

6Ag - the effect due to inconsistencies in vertical datum.

We also assume that the idealized set of terrestrial data Ag1  is
that implied by the potential coefficients:

AgI = Agn  (40)

n=2

where Agn  are given by formula (27).

Substituting for Ag in equation (28) we have

n

N N o+ - ff  S( ) (Ag I + 6Ag) dac + 1c (41)

0 i G2 ln~ d Agn 41

=\4 a n 2

or
uno

R-o f S() AgI dOc + Qln('c Agn + 6N (42)
"N=N"+.R

o 0Gf ~o g 2G n g
c n=2

where

6N*W (43)" ' -" 6 N - / S ( ) 6 A g d a c  3~c

Therefore, we can rewrite (42) in the form:

N = N I + 6N (44)|I,'.I

where

N I - idealized set of geoid undulation implied by AgI.
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Now we will evaluate the 6N term (eq. 43) which can be attributed
to the effect of datum inconsistencies implied by the computational
method (28).

Introducing the Molodenskii's truncation coefficients (eq. 24)
we can rewrite (43) as:

R R:-6 N- S(O) Q 6Agn (45)

2 -n=2 n

The ordinary Stokes' integral in (45) represents the total effect of
datum inconsistencies in terms of geoid undulation which was already
evaluated in Chapter 6 (eq. 13) and is given in Table 2 in terms of
degree variances (we will use data in the third column of Table 2 as
pertaining to the most complete thirdmodel of datum inconsistencies).
The quantities 6Lg were also evaluated in Chapter 6 in the form of
degree variances (eq. 15). They simply represent the spherical har-
monic decomposition of the effect of vertical datum-inconsistencies
described in terms of gravity anomalies. Now we can rewrite eq. (45)
using the explicit spherical harmonic decomposition of the integral
term in formula (45) and substituting for 6Agn by means of correction
coefficients 6Cnm and -Snm already found in Chapter 6 (eq. 10):

0n
N= R (-C nmCos mX + TSnmsin mx) nm(Cos 6) +

n=2 m=O

R(n-1) nT co__ (6
n!2Q

ln(Oc) R m= (-Cnmcs mx + Snmsin nX) Pnm(cose) (46)

:F or

n n-i
6N (R (-nmcos m X + -Sn sin mx)Pn(COSe )(1 l (47)

n=2 m=0 nm n(1

We can rewrite (47) as follows:

6N= N (1 Qln(Oc )  (48).n=2 n -2
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where

n __

Nn =R X (TCnmCOS mX + -Snm sin mx ) P(Cos e)
m=O

denotes the undulation Laplace spherical harmonic of n-th degree due to
vertical datum inconsistencies. Note that in the formula (48) the
Laplace harmonics are modified by the cap-size dependent factor

0 .E2 Qin(dc)

which reflects the truncation effect.

Since we are interested mostly in the magnitude of the effect
described by eq. (48) we will rewrite this equation in terms of degree
variances which reflect the average effect due to the specific degree.

.-. Then, the cummulative effect up to degree 180 may be defined as:

-- V180 ( 1- Qn( ))2 (49)
NRn2 I n 21 inc~n= 2

where

X n - denotes the undulation error degree variance (Chapter 6, eq. 13).

The numbers Vin were computed in Chapter 6 and are given in Table
2. We will use the last column in Table 2 as being implied by our
most complete model of datum inconsistencies.

Now, equation (49) can be evaluated for different values of cap-
radius 'c with upper summation index n =180. Figure 34 shows this

- effect plotted for the two cases: Curve 1 was constructed exactly
like in formula (49) using unmodified Molodenskii's coefficients Qln(p)-
Curve 2 was constructed using modified Molodenskii coefficients Q2n(o)
which arise when the modified kernel S(p) - S(oc) was originally used
in method (28).

From Figure 34 we see that maximum effect of datum inconsistencies
occurs for the truncation angle oc=1 80° (that is when global data is used).
and reaches 44.51 cm. This result should be compared with 44.7 cm
cumulative effect on geoid undulation computed in Chapter 6, eq. (14),
which is based on the summation from 0 to 180 of the square roots of
correction coefficients degree variances (eq. 10). The slight difference
is due to the magnitude of the zero degree term which is not considered
by formula (49).

-79-

, .,""'" """ ""' "" " " "" ""-' , . .. -, : .,, .-. % . , - ,. ? % .- -. , 44. .4*. - ...-.. . . .".... .., ... '.'



1 2

CZ-

Z

LL

I-

1 - using unmodified Stokes' kernel
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Figure 34. Cumulative effect on geoid undulation (excluding zero-degree
term, see eq. 49) due to vertical datum inconsistency model
Ah3 for different truncation angles.
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For the truncation angle c=O ° the effect due to eq. (49) is
zero since no terrestrial gravity data -s actually used. For spherical
caps having radius Pc < 390 the effect due to the modified Molodenskii
kernel is considerably smaller than the effect due to the unmodifiedStokes' kernel.

The caps used in most practical cases have radius varying from
10 to 15 degrees which can produce the effect varying from 6 to 11 cm
for the case of modified kernel or from 13 to 19 cm for the case of
simple Stokes' kernel (see Figure 34).

If we combine the cumulative effect on undulation due to harmonics
having degree from 2 to 180 as computed from formula (49) (Figure 34)
with the zero degree effect expressed by eq. (38) we will find the
total effect due to vertical datum inconsistencies associated with
our basic method for computation of geoid undulation (see eq. 28).
Using equations (38) and (49)-the magnitude of this todal effect can
be expressed as follows:

~180
(R)2 (1-Q 0 )

2 + x (1 n-i )2 (50)

n=2 n 2 in

Figure 35 shows this effect for the two cases: curve 1 is related
to the unmodified Stokes' kernel, whereas curve 2 is related to the
modified Molodenskii's kernel, depending which one is used in our basic
method of geoid undulation computation (formula 28). From the figure
we note that for the truncation angle Pc=00  the total effect is 1.85 cm
which represents the constant:

R

':" 2G go

This constant is independent of the truncation angle Oc. It was
originally introduced by the formula (22), and evaluated for the zero
degree harmonic component of the error in gravity anomaly field due
to the inconsistency in the vertical datums (see formula 34). For
the truncation angle oc= 180 °, that is for the global data set, the
total effect reaches 44.55 cm for the ordinary Stokes' kernel and
45.52 cm for the modified one.

For the usual cap size ranging from 10 to 15 degrees the total
effect shown on Figure 35 varies from 13 to 19 cm for the ordinary
Stokes' kernel and from 7 to 11 cm for the modified one. Since in
many applications there is a need for the determination of the geoid
to the accuracy of 10 cm, the effects computed here cannot be neglected.
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Figure 35. The total cumulative effect on geoid undulation (including
zero-degree component, see eq. 50) due to vertical datum
inconsistency model Ah3 for different truncation angles.
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8. SUMMARY AND CONCLUSIONS

The Sea Surface Topography determines the deviation of the MeanU Sea Level from the geoid. This deviation causes different vertical
datums existing in different parts of the world to refer to slightly
different zero-levels. Those zero-levels define different equipotential
surfaces of Earth's gravitational potential or surfaces that are not

S.,. even equipotential (due to overconstrained adjustment of levelling
* net). Therefore, the terrestrial gravity data that were reduced 'to
- the geoid' are in fact in an inconsistent system. These inconsistencies

in the global vertical datum can be modeled to the accuracy the
SST is known, provided sufficient information on variety of existing
vertical networks and procedures is available.

Today, our knowledge on the SST variation is far from complete.
The same pertains to the information on actual vertical datums on most
of the land areas on our globe. Therefore, the approach presented
in this work can be classified as the numerical simulation technique.
We constructed three different approximations of the hypothetic vertical
datum inconsistencies as shown on Figures 17, 18 and 19. In order
to evaluate the propagated error in potential coefficients due to the
vertical datum inconsistencies we carried out the spectral analysis
of those approximating function (formula (10)). The correction coef-
ficients produced in this way represent the errors in potential coef-
ficient due to datum inconsistency, provided geopotential is determined
using only terrestrial gravity anomaly data.

Table 1 shows that global datum inconsistency can produce a sig-
nificant relative error in potential coefficients that, for low degree
harmonics, can reach almost 1 percent. In terms of geoid undulation
this error translates to the average of almost half a meter at first
degree harmonics. The cumulative error up-'to degree 180 (see formula
(14)) was computed as 44.67 cm, which means it can easily reach the

-'S. full amplitude of the SST variation.

Beyond degree 60 the e-fect of vertical datum inconsistency is
of the order of background noise and can be neglected. The most sig-
nificant contribution is in the low degree harmonics. As can be es-
timated from Figure 30 the low order correction coefficients within
the first 10 degrees carry as much as 92.6 percent of the total energy
of the error-spectrum (if we confine our study up to degree 180).
Beyond degree 60 there is only about 1 percent of the total energy
in the error-spectrum.

The conclusion is that by supplying the low degree harmonics of
geopotential (say up to degree 10) from other sources than the ter-
restrial gravity data we can avoid as much as 90 percent of the error
introduced by the inconsistencies in vertical datum. From that point
of view the combination of satellite-derived low degree coefficients
with the high degree coefficients derived from terrestrial data is
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highly recommended. Plots similar to those of Figure 30 or Figure 31
can provide the estimate of the optimal 'splitting degree', so that
the errors over the whole spectrum are minimized.

The internal warp in the North Americal vertical datum as modeled
in Figure 15 seems to have a negligible effect on the determination
of spherical harmonics coefficients of gravitational potential. In
terms of the error in geoid undulation, this effect can be estimated
to be of the order of millimeters.

Finally, the effect due to the computational procedures such as
,- the one proposed by Rummel and Rapp (1976) (see eq. 28) is of a great

practical importance. It was shown that due to the inconsistency in
the world vertical datum the frequency content of a given terrestrial
gravity anomaly data may differ from the frequency content of an idealized
anomalies implied by a consistent vertical reference. This discrepancy

-.4 in turn will propagate on geoid undulation as determined by the compu-
tational method such as the one of Rummel and Rapp (eq. 28). The mag-
nitude of that effect is a function of size of spherical cap used in
the computations. For the usual cap size ranging from 10 to 15 degrees
in spherical radius this effect ranges from 7 cm to 11 cm or from 13 cm
to 19 cm depending on the modified kernel or unmodified one was used
in the computations. In the near future the 10 cm accuracies will
be required for the determination of geoid. We conclude that due to
vertical datums inconsistencies the 10 cm level is actually the highest
possible resolution that could be achieved using the terrestrial gravity
data. One cannot go beyond that limit without solving the vertical
datum problem.
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